See your data analysis like never before!

Attention Stormwatchers!

Remember all that data analysis you’ve been doing for us? All those storms you’ve tracked in both archive and real time data have now been used to create an animation of what the Sun has been up to over the first three years of the STEREO mission. Over the summer, a student of mine, Amy Skelt, wrote a program to enable us to view your data analysis in a unique way. By taking all your CME tracking information and combining it with my analysis of smaller solar wind features, we can now create animations showing the activity of the solar wind throughout the first three years of the STEREO mission. Just in time for Christmas I’ve used Amy’s software to create a movie of the entire Stormwatch analysis so far. You can view the movie here;

It’s incredible! You can now see the constant stream of solar wind material as it erupts into space and even the spirals created as the various sources of solar wind rotate with the Sun. And when a solar storm erupts, you can see which planets are in the firing line!

We’ve had to make some assumptions about the rate at which the solar storms expand and so any differences between this movie and the real world will help us understand how realistic our assumptions are. Amy made the software very flexible so that you can view the solar system from a fixed point (as in the attached movie), from above or even from a moving object. You can even go for a ride on comet Encke and see how it fares as it rides the solar wind!

As usual, many, many thanks for your time and efforts so far. In the New Year my group and I at the University of Reading will be using your data analysis to investigate what we have learned so far about using STEREO HI data to make real-time forecasts. Working with the UK Met Office, we will ultimately be applying what we learn to improving the operational space weather forecasting model that they will be running. In the current climate, there is much talk of ‘impact’. I can confidently say that you are helping us with our impact. Both metaphorically and literally!

I hope that those of you that are about to celebrate Christmas have a wonderful holiday.

See you in the New Year for more Solar Storming!

Chris.

Advertisements

New York to Rome in 2 seconds

This post is part of Citizen Science September at the Zooniverse.

Some of the fastest solar storms (coronal mass ejections or CMEs) that Solar Stormwatch volunteers measure have speeds of around 450 km/s. That’s a billion tonnes of plasma being blasted off the Sun at a million miles per hour. If it’s pointing at Earth the CME will arrive 3 days later. Not all CMEs are Earth bound though and any of the other planets in the solar system might be in the firing line.

On July 23 2012 the fastest CME recorded by STEREO blasted away from the sun at a staggering 3,400 km/s (7.6 million mph.) That’s New York to Rome in 2 seconds. This rates as Extremely Rare on NASA’s CME speed scale and we can expect one this fast to occur only once every 10 years. While CMEs might be big you won’t be able to see one if you look up. Solar spacecraft are fitted with very sensitive cameras to capture the tenuous outflow of particles. Here’s how STEREO Ahead’s Cor2 (coronograph) recorded the event.

click for video – published on YouTube 23 Jul 2012 by ve3en1

The source of the CME was sunspot Active Region 1520. An active region (AR) is an area with an especially strong magnetic field and is often associated with sunspots and solar activity. AR 1520 was very photogenic when it was on the Earth-side of the Sun earlier in July.

The Sun on 15 July 2012. AR 1520 is the feature at 5 o’clock.
(photo ©Julia Wilkinson)

Luckily AR 1520 unleashed the super-fast CME after it had rotated to the far-side and despite being an 80 degree wide CME all of the inner planets, including Earth, escaped its blast. A YouTube summary can be found here.

So what’s the big fuss about Earth-bound CMEs fast or otherwise? Well most of the time you wouldn’t even know one had hit us but just occasionally they can cause problems. If the direction of the CME’s magnetic field is southward, (opposite to the Earth’s magnetic field), the two magnetic fields interact producing a geomagnetic storm. Such storms enhance the activity in the Earth’s radiation belts which presents a radiation hazard to low-Earth orbit satellites and the ISS astronauts as they pass through the South Atlantic Anomaly. Geomagnetic storms also generate electric currents which can cause electrical surges through power lines and damage power grids. In 1989 a geomagnetic storm blacked-out most of Quebec as circuit breakers tripped on Quebec’s Hydro-electric power grid. The super-fast storm of 23 July might have missed Earth but the STEREO Ahead spacecraft took a battering from a very large proton storm associated with the CME. Proton storms can damage a spacecraft’s electronics.

This is how Solar Stormwatchers saw the CME in the STEREO Beacon mode (near real-time) feed. The effect on STEREO A is clear but it did survive to carry on its mission.

It’s pretty useful then to be able to predict the speed and direction of CMEs but there is still much to learn about what triggers them. This is where Solar Stormwatch comes in. Data from the project are being used to track and measure solar storms to learn more about how they begin and how they evolve. If you want to contribute to solar science, it’s easy, just click and join in!

Sunspots ahoy!

Over on our sister site, the Old Weather team are digitising ship’s logs from first world war Royal Navy vessels in order to capture the valuable meteorological information that the fleet collected. These records also contain information that can be surprisingly useful for a whole host of other reasons.

One such example was identified by HebesDad and brought to our attention over at Solar Stormwatch by Caro.

Log_and_zoom

In the log of H.M.S. Hilary on Saturday February 10th 1917, the observer wrote;
“at noon aTS observed spots near centre of sun like this [diagram] it appeared to be two with a narrow passage between them, I make this note, for although I have seen sun spots before, I have never seen such large ones”

This is an unusual sighting and, if observed with the naked eye, (something you should never try to do as you risk damaging your eyes) the spots must have been very large indeed.

I consulted my colleagues at the UK Solar System Data Centre at the Rutherford Appleton Laboratory and they were able to confirm that this observation was indeed correct. Photographs taken from the Dehra Dun observatory show quite clearly that on that day, and on the days leading up to the 10th, a large sunspot group was indeed observed almost exactly as the observer on H.M.S. Hilary described.

Feb_1917_sunspots

My colleague Dr David Willis, an expert on historical sunspot observations, informs me that the accepted limit above which sunspots can be seen with the naked eye is taken to be when a sunspot exceeds an area of 500 millionths of the Sun’s visible hemisphere. On my screen, the Sun has a diameter of 220mm while the spots are around 10 mm. Using the formula for the area of a circle (3.14 x [radius squared]), I estimate that the area of each of these spots is around 6195 millionths of the total area of the Sun. These sunspots are clearly above the threshold to be viewed with the naked eye!

David also provided information from the Greenwich observatory publication “Sunspots and Geomagnetic-Storm Data Derived From Greenwich Observations 1874-1954” (HM Stationary Office, 1955). In a list of the 55 greatest sunspots in the interval 1874-1954 this sunspot group (number 7977) recorded the 8th largest maximum area.

The reason we are so interested in observation of sunspots is that these regions are closely linked with solar mass ejections – vast eruptions of material from the Sun’s atmosphere. If one of these eruptions comes towards Earth, it can generate spectacular auroral displays, disturb the Earth’s magnetic field – leading to anomalous compass bearings, deplete the ionosphere (the electrically charged layers in the Earth’s upper atmosphere) – leading to disruption of radio communications, and cause surges of electricity along any long cables such as power and communications networks.

Matthew Wild at the UKSSDC generated a plot of the aa index for February 1917. The aa index is a measure of the variability in Earth’s magnetic field. This index compares the measurements made by two magnetic observatories on opposite sides of the World in the UK and Australia. Measurements started in 1868. Originally the UK measurements were made at Kew in London but they are now made at Hartland in the UK while the Australian measurements are made in Canberra. Large values of aa represent a disturbed magnetic field.

191702_aa

Looking at the aa index for February 1917 we can see that the values around the 10th were not particularly high but that on the 15th February, aa levels increased from around 20 to over 150! It is likely that this is a result of the Earth being hit by a solar storm launched from this enormous sunspot group. It is difficult to say how big or fast this storm was since we have no record of when it was launched but these storms travel at speeds between 400 and 2000 km per second, reaching Earth in 1-3 days. It would be interesting to see if any ships reported erratic compass bearings during this time as the cloud of solar material buffeted the Earth’s magnetic field in space. Variable magnetic fields set up electrical currents that heat the Earth’s upper atmosphere, depleting the ionisation there. As a consequence, wireless operators, using the ionosphere to reflect their wireless signals around the world, would also have noticed a weakened signal strengths in the days that followed the arrival of the solar storm at Earth. The Greenwich publication noted a ‘small’ geomagnetic storm on the 15th and rather curiously relates it to the much smaller sunspot group number 7990 though there seems to be no conclusive proof of this.

So, there you have it. A rare observation of a large sunspot group visible with the naked eye recorded with precision by a diligent observer who presumably knew the potential impact that such an observation could have to both the ship’s navigation and radio communication (if it was equipped with such modern technology).

Sunspot_photo_and_drawing

If you are interested in finding out more about the Sun and solar storms feel free to join us over at solar stormwatch where you can even help predict the arrival of solar storms at Earth. Meanwhile please keep us posted on any sightings of aurora, sunspots, erratic compass needles or poor wireless reception. They are all clues about the activity of the Sun in a time long before spaceflight.

My thanks to Matthew, Sarah and David at the Rutherford Appleton Laboratory for helping to piece this story together. If you would like more information about the UK Solar System Data Centre and the records it contains, visit http://www.ukssdc.ac.uk. Solar images are under Crown Copyright.

Chris.

Storms, data-analysis and fruitcake

Thanks to everyone who helped track the most recent bunch of solar storms. Several of them came by Earth but their magnetic fields were mostly the same polarity as Earth’s and when this happens, just like in the school experiment, the two magnetic fields just bounce off each other. I was amazed that we could track an Earth-directed storm at all from where the spacecraft are now, particularly with the gaps now appearing in the data coverage in incoming-traceit. You are really showing us what the limits are on our mission! Keep tracking the real-time events though. Even if we can’t track them to Earth very easily we can still test out our tracking skills by watching them go by other planets. We have spacecraft around all the inner planets at the moment:- Messenger at Mercury, Venus Express at Venus, the sister-craft to Mars Express which (amongst others) is orbiting Mars.

Thanks to your efforts we now have two publications that used your clicks to help track storms and dust. The next task we’re aiming to do is to analyse the huge amount of data you have processed in the trace-it archive. With this dataset we hope to track each storm in detail as it expands out into the solar wind. Experts like Solar Stormwatch’s own Neel Savani can turn your clicks into a comprehensive survey of all the storms we have seen. Not only will this analysis tell us how fast and how big each storm was, it should also reveal how much it was distorted by the solar wind into which it was expanding – vital information in tracking their progress towards our planet.

So, please keep clicking on trace-it archive data too. The real time stuff may be the most exciting but the careful consideration of the archived data will be an important part of the Solar Stormwatch legacy too.

And the fruitcake? Ah… I appear to have eaten the last photograph of one that Jules posted to the forum… sorry.

Thanks once again for all your enthusiasm, time and efforts. It really is a privilege working with you all.

Chris.

Thanks for another year of stormwatching!

As another year of stormwatching draws to a close I thought I’d summarise some of the things we have achieved and talked about. So rather than go on at length here’s a word cloud taken from the blog topics over the last year. The larger the text, the more that word featured.  Enjoy!

www.wordle.net

Thanks to all stormwatchers for your sterling efforts in 2011. Here’s to 2012 and another busy year of watching and monitoring our nearest star.


jules

Real science, real progress

Hi Stormwatchers! The science team may have been a bit quiet on the Stormwatch forum of late but that doesn’t mean we’re not still involved. You may have seen the announcement in the forum pages of our first Stormwatch related paper, published in the Monthly Notices of the Royal Astronomical Society. This focussed on the detection of interplanetary dust from particle trails seen in HI images. If you want to see how your efforts translated to real science, a preview of the paper can be found at; http://arxiv.org/abs/1111.4389 thanks to everyone who spent the time looking at dust! There is a second paper, this time using Stormwatch identifications of solar storms to remove them from the data so that we could look at the effects of high speed solar wind streams arriving at Earth. This paper has been submitted to the Space Weather journal and is currently under review (it is sent to fellow scientists for their comments to ensure that we’re not saying anything incorrect or outrageous). I’ll let you know when I hear more about this. So, we have two publications on the go, with real science informed by your efforts. Thank you so much, we really appreciate your time and efforts but it won’t stop there. Currently we have scientists lined up to take a look at the Stormwatch real-time forecasts generated by you in incoming! and incoming trace-it, and also someone who will be looking at the comet data. This is potentially really exciting as we’re hoping to use observations of the absorption of starlight as the tail drifts across distance starts to tell us something about the particle sizes in the comet tail. Comparing these with observations made in the infra-red by the Herschel spacecraft will hopefully provide some insight into the generation of the very material that we have seen hitting the STEREO spacecraft!

You may also have seen that there was an earth-directed storm that arrived at Earth today without us being able to make a prediction from your clicks. This may have been due to unfortunate gaps in the telemetry from the spacecraft or simply that the spacecraft are now sufficiently far from Earth that making such forecasts for our planet are becoming more challenging. Please keep clicking though, any storm tracked in the science and real-time data is providing us with valuable information on what we will need if we are to accurately predict these storms in future. There is plenty of information left to be mined from our data and we simply wouldn’t be able to do it without you all. Thank you once again for your enthusiasm, efforts and time. It’s such a privilege to be working with you all.

Chris.

Astronomy Photographer of the Year 2011 – the solar selection

Last month I attended the Astronomy Photographer of the Year awards, held at the Royal Observatory Greenwich, with fellow Solar Stormwatch forum moderator ElisabethB (Els) and fellow Moon Zoo forum moderator Geoff. The overall winner was an amazing photo of Jupiter, Io and Ganymede by Damian Peach showing detail on the two moons  – well worth pouring over in high resolution. Some solar astrophotos made the final list this year. In particular Dani Caxete’s photo of the ISS crossing the Sun was one of our favourites as this required nerves of steel to click the shutter at the precise moment.

Here are the solar related photos that made it through to the finals.

“Earth and Space” category runners up:

Divine Presence
by Ole C. Salomonsen (Norway)

high resolution version
Volcanic Aurora
by Örvar Atli Þorgeirsson (Iceland)

high resolution version

“Our Solar System” category runners up:

May 7th Hydrogen-Alpha Sun
by Peter Ward (Australia)


high resolution version
ISS and Endeavour crossing the Sun
by Dani Caxete (Spain)


high resolution version

And here are some that didn’t make the final:

Another ISS transit
by Thierry Legault
Entitled “solar keyhole”
by Steven Christenson
A different kind of transit
by astronominsk
A fabulous sunset
by Stefano De Rosa
A sun halo
by Niki Giada

More photos and information on the APOTY website and the Flickr APOTY pool.